unittest.mock
— mock 物件函式庫¶
在 3.3 版新加入.
unittest.mock
在 Python 中是一個用於進行測試的函式庫。 它允許你用 mock 物件在測試中替換部分系統,並判定它們是如何被使用的。
unittest.mock
提供了一個以 Mock
為核心的類別,去除在測試中建立大量 stubs 的需求。 在執行動作之後,你可以判定哪些 method (方法)/屬性被使用,以及有哪些引數被呼叫。 你還可以用常規的方式指定回傳值與設定所需的屬性。
此外,mock 還提供了一個 patch()
裝飾器,用於 patching 測試範圍內對 module(模組)以及 class(類別)級別的屬性,以及用於建立唯一物件的 sentinel
。有關如何使用 Mock
、MagicMock
和 patch()
的一些範例,請參閱快速導引。
Mock 被設計用於與 unittest
一起使用,並且基於 「action(操作) -> assertion(判定)」 模式,而不是許多 mocking 框架使用的 「record(記錄) -> replay(重播)」 模式。
對於早期版本的 Python,有一個 backport(向後移植的)unittest.mock
可以使用,從 PyPI 下載 mock。
快速導引¶
Mock
和 MagicMock
物件在你存取它們時建立所有屬性和 method(方法),並儲存它們如何被使用的詳細訊息。你可以配置它們,以指定回傳值或限制可用的屬性,然後對它們的使用方式做出判定:
>>> from unittest.mock import MagicMock
>>> thing = ProductionClass()
>>> thing.method = MagicMock(return_value=3)
>>> thing.method(3, 4, 5, key='value')
3
>>> thing.method.assert_called_with(3, 4, 5, key='value')
side_effect
允許你執行 side effects,包含在 mock 被呼叫時引發例外:
>>> from unittest.mock import Mock
>>> mock = Mock(side_effect=KeyError('foo'))
>>> mock()
Traceback (most recent call last):
...
KeyError: 'foo'
>>> values = {'a': 1, 'b': 2, 'c': 3}
>>> def side_effect(arg):
... return values[arg]
...
>>> mock.side_effect = side_effect
>>> mock('a'), mock('b'), mock('c')
(1, 2, 3)
>>> mock.side_effect = [5, 4, 3, 2, 1]
>>> mock(), mock(), mock()
(5, 4, 3)
Mock 有許多其他方法可以讓你配置與控制它的行為。例如,spec 引數可以配置 mock ,讓其從另一個物件獲取規格。嘗試讀取 mock 中不存在於規格中的屬性或方法將會失敗,並出現 AttributeError
。
patch()
裝飾器/情境管理器可以在測試中簡單的 mock 模組中的類別或物件。被指定的物件在測試期間會被替換為 mock(或其他物件),並在測試結束時恢復:
>>> from unittest.mock import patch
>>> @patch('module.ClassName2')
... @patch('module.ClassName1')
... def test(MockClass1, MockClass2):
... module.ClassName1()
... module.ClassName2()
... assert MockClass1 is module.ClassName1
... assert MockClass2 is module.ClassName2
... assert MockClass1.called
... assert MockClass2.called
...
>>> test()
備註
當你嵌套 patch 裝飾器時,mock 會以被應用的順序傳遞到裝飾函數(裝飾器應用的正常 Python 順序)。這意味著由下而上,因此在上面的範例中,module.ClassName1
的 mock 會先被傳入。
使用 patch()
時,需注意的是你得在被查找物件的命名空間中(in the namespace where they are looked up)patch 物件。這通常很直接,但若需要快速導引,請參閱該 patch 何處。
裝飾器 patch()
也可以在 with 陳述式中被用來作為情境管理器:
>>> with patch.object(ProductionClass, 'method', return_value=None) as mock_method:
... thing = ProductionClass()
... thing.method(1, 2, 3)
...
>>> mock_method.assert_called_once_with(1, 2, 3)
也有 patch.dict()
,用於在測試範圍中設定 dictionary(字典)內的值,並在測試結束時將其恢復為原始狀態:
>>> foo = {'key': 'value'}
>>> original = foo.copy()
>>> with patch.dict(foo, {'newkey': 'newvalue'}, clear=True):
... assert foo == {'newkey': 'newvalue'}
...
>>> assert foo == original
Mock 支援對 Python 的魔術方法的 mocking。最簡單使用魔術方法的方式是使用 MagicMock
類別。它允許你執行以下操作:
>>> mock = MagicMock()
>>> mock.__str__.return_value = 'foobarbaz'
>>> str(mock)
'foobarbaz'
>>> mock.__str__.assert_called_with()
Mock 允許你將函式(或其他 Mock 實例)分配給魔術方法,並且它們將被適當地呼叫。MagicMock
類別是一個 Mock 的變體,它為你預先建好了所有魔術方法(好吧,所有有用的方法)。
以下是在一般 Mock 類別中使用魔術方法的範例:
>>> mock = Mock()
>>> mock.__str__ = Mock(return_value='wheeeeee')
>>> str(mock)
'wheeeeee'
為了確保測試中的 mock 物件與它們要替換的物件具有相同的 api,你可以使用自動規格。自動規格(auto-speccing)可以通過 patch 的 autospec 引數或 create_autospec()
函式來完成。自動規格建立的 mock 物件與它們要替換的物件具有相同的屬性和方法,並且任何函式和方法(包括建構函式)都具有與真實物件相同的呼叫簽名(call signature)。
這可以確保如果使用方法錯誤,你的 mock 會跟實際程式碼以相同的方式失敗:
>>> from unittest.mock import create_autospec
>>> def function(a, b, c):
... pass
...
>>> mock_function = create_autospec(function, return_value='fishy')
>>> mock_function(1, 2, 3)
'fishy'
>>> mock_function.assert_called_once_with(1, 2, 3)
>>> mock_function('wrong arguments')
Traceback (most recent call last):
...
TypeError: <lambda>() takes exactly 3 arguments (1 given)
create_autospec()
也可以用在類別上,它複製了 __init__
方法的簽名,它也可以用在可呼叫物件上,其複製了 __call__
方法的簽名。
Mock 類別¶
Mock
是一個彈性的的 mock 物件,旨在代替程式碼中 stubs 和 test doubles (測試替身)的使用。Mock 是可呼叫的,並在你存取它們時將屬性建立為新的 mock [1]。存取相同的屬性將永遠回傳相同的 mock。Mock 記錄了你如何使用它們,允許你判定你的程式碼對 mock 的行為。
MagicMock
是 Mock
的子類別,其中所有魔術方法均已預先建立並可供使用。也有不可呼叫的變體,在你 mock 無法呼叫的物件時很有用:NonCallableMock
和 NonCallableMagicMock
patch()
裝飾器可以輕鬆地用 Mock
物件臨時替換特定模組中的類別。預設情況下,patch()
會為你建立一個 MagicMock
。你可以使用 patch()
的 new_callable 引數指定 Mock
的替代類別。
- class unittest.mock.Mock(spec=None, side_effect=None, return_value=DEFAULT, wraps=None, name=None, spec_set=None, unsafe=False, **kwargs)¶
建立一個新的
Mock
物件。Mock
接受數個可選的引數來指定 Mock 物件的行為:spec:這可以是字串的 list(串列),也可以是充當 mock 物件規格的現有物件(類別或實例)。如果傳入一個物件,則通過對該物件呼叫 dir 來形成字串的串列(不包括不支援的魔術屬性和方法)。存取不在此串列中的任何屬性都會引發
AttributeError
。如果 spec 是一個物件(而不是一個字串的串列),那麼
__class__
會回傳 spec 物件的類別。這允許 mocks 通過isinstance()
測試。spec_set:spec 的一個更嚴格的變體。如果使用 spec_set,在 mock 上嘗試 set 或取得不在傳遞給 spec_set 的物件上的屬性將會引發
AttributeError
。side_effect:每當呼叫 Mock 時要呼叫的函式,參見
side_effect
屬性,用於引發例外或動態變更回傳值。該函式使用與 mock 相同的引數呼叫,且除非它回傳DEFAULT
,否則此函式的回傳值將用作回傳值。side_effect 也可以是一個例外的類別或實例。在這種情況下,當呼叫 mock 時,該例外將被引發。
如果 side_effect 是一個可疊代物件,那麼對 mock 的每次呼叫將回傳可疊代物件中的下一個值。
side_effect 可以通過將其設置為
None
來清除。return_value:當呼叫 mock 時回傳的值。預設情況下,這是一個新的 Mock(在首次存取時建立)。參見
return_value
屬性。unsafe:預設情況下,存取任何以 assert、assret、asert、aseert 或 assrt 開頭的屬性將引發
AttributeError
。如果傳遞unsafe=True
,將會允許存取這些屬性。在 3.5 版新加入.
wraps:被 mock 物件包裝的項目。如果 wraps 不是
None
,那麼呼叫 Mock 將通過被包裝的物件(回傳真實結果)。存取 mock 的屬性將會回傳一個 Mock 物件,該物件包裝了被包裝物件的對應屬性(因此嘗試存取不存在的屬性將引發AttributeError
)。如果 mock 已經明確設定了 return_value,那麼呼叫並不會被傳遞到被包裝的物件,而是回傳已設定好的 return_value。
name:如果 mock 有一個名稱,那麼它會被用於 mock 的 repr。這對於除錯很有用。此名稱將被傳播到子 mocks。
Mocks 還可以使用任意的關鍵字引數進行呼叫。這些關鍵字引數將在建立 mock 之後用於設定 mock 的屬性。欲知更多,請參見
configure_mock()
方法。- assert_called()¶
確認 mock 至少被呼叫一次。
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called()
在 3.6 版新加入.
- assert_called_once()¶
確認 mock 只被呼叫一次。
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_once() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_once() Traceback (most recent call last): ... AssertionError: Expected 'method' to have been called once. Called 2 times.
在 3.6 版新加入.
- assert_called_with(*args, **kwargs)¶
這個方法是一個便利的方式,用來斷言最後一次呼叫是以特定方式進行的:
>>> mock = Mock() >>> mock.method(1, 2, 3, test='wow') <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_with(1, 2, 3, test='wow')
- assert_called_once_with(*args, **kwargs)¶
確認 mock 只被呼叫一次,且該次呼叫使用了指定的引數。
>>> mock = Mock(return_value=None) >>> mock('foo', bar='baz') >>> mock.assert_called_once_with('foo', bar='baz') >>> mock('other', bar='values') >>> mock.assert_called_once_with('other', bar='values') Traceback (most recent call last): ... AssertionError: Expected 'mock' to be called once. Called 2 times.
- assert_any_call(*args, **kwargs)¶
斷言 mock 已經被使用指定的引數呼叫。
這個斷言在 mock 曾經被呼叫過時通過,不同於
assert_called_with()
和assert_called_once_with()
,他們針對的是最近的一次的呼叫,而且對於assert_called_once_with()
,最近一次的呼叫還必須也是唯一一次的呼叫。>>> mock = Mock(return_value=None) >>> mock(1, 2, arg='thing') >>> mock('some', 'thing', 'else') >>> mock.assert_any_call(1, 2, arg='thing')
- assert_has_calls(calls, any_order=False)¶
斷言 mock 已經使用指定的呼叫方式來呼叫。此斷言會檢查
mock_calls
串列中的呼叫。如果 any_order 為 false,那麼這些呼叫必須按照順序。在指定的呼叫之前或之後可以有額外的呼叫。
如果 any_order 為 true,那麼這些呼叫可以以任何順序出現,但它們必須全部出現在
mock_calls
中。>>> mock = Mock(return_value=None) >>> mock(1) >>> mock(2) >>> mock(3) >>> mock(4) >>> calls = [call(2), call(3)] >>> mock.assert_has_calls(calls) >>> calls = [call(4), call(2), call(3)] >>> mock.assert_has_calls(calls, any_order=True)
- assert_not_called()¶
斷言 mock 從未被呼叫。
>>> m = Mock() >>> m.hello.assert_not_called() >>> obj = m.hello() >>> m.hello.assert_not_called() Traceback (most recent call last): ... AssertionError: Expected 'hello' to not have been called. Called 1 times.
在 3.5 版新加入.
- reset_mock(*, return_value=False, side_effect=False)¶
reset_mock 方法重置 mock 物件上的所有呼叫屬性:
>>> mock = Mock(return_value=None) >>> mock('hello') >>> mock.called True >>> mock.reset_mock() >>> mock.called False
在 3.6 版的變更: reset_mock 函式新增了兩個僅限關鍵字引數 (keyword-only arguments)。
這在你想要進行一系列重複使用同一物件的斷言時非常有用。請注意,預設情況下,
reset_mock()
不會清除回傳值、side_effect
或使用普通賦值設定的任何子屬性。如果你想要重置 return_value 或side_effect
,則將相應的參數設置為True
。Child mock 和回傳值 mock(如果有的話)也會被重置。備註
return_value 和
side_effect
是僅限關鍵字引數。
- mock_add_spec(spec, spec_set=False)¶
向 mock 增加一個規格 (spec)。spec 可以是一個物件或一個字串串列 (list of strings)。只有在 spec 上的屬性才能作為 mock 的屬性被取得。
如果 spec_set 為 true,那麼只能設定在規格中的屬性。
- attach_mock(mock, attribute)¶
將一個 mock 作為這個 Mock 的屬性附加,取代它的名稱和上代 (parent)。對附加的 mock 的呼叫將被記錄在這個 Mock 的
method_calls
和mock_calls
屬性中。
- configure_mock(**kwargs)¶
透過關鍵字引數在 mock 上設定屬性。
可以在使用 method(方法)呼叫時,使用標準點記法 (dot notation) 並將字典拆開,為 child mock 設定屬性、回傳值和 side effects:
>>> mock = Mock() >>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError} >>> mock.configure_mock(**attrs) >>> mock.method() 3 >>> mock.other() Traceback (most recent call last): ... KeyError
同樣的事情可以在 mock 的建構函式呼叫中實現:
>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError} >>> mock = Mock(some_attribute='eggs', **attrs) >>> mock.some_attribute 'eggs' >>> mock.method() 3 >>> mock.other() Traceback (most recent call last): ... KeyError
configure_mock()
的存在是為了在 mock 被建立後更容易進行組態設定。
- __dir__()¶
Mock
物件限制了dir(some_mock)
僅顯示有用的結果。對於具有 spec 的 mock,這包含所有被允許的 mock 屬性。請參閱
FILTER_DIR
以了解這種過濾行為的作用,以及如何關閉它。
- _get_child_mock(**kw)¶
建立為了得到屬性和回傳值的 child mock。預設情況下,child mock 將與其上代是相同的型別。Mock 的子類別可能會想要置換此行為,以自定義 child mock 的建立方式。
對於不可呼叫的 mock,將使用可呼叫的變體,而不是任何的自定義子類別。
- called¶
一個 boolean(布林),表述 mock 物件是否已經被呼叫:
>>> mock = Mock(return_value=None) >>> mock.called False >>> mock() >>> mock.called True
- call_count¶
一個整數,告訴你 mock 物件被呼叫的次數:
>>> mock = Mock(return_value=None) >>> mock.call_count 0 >>> mock() >>> mock() >>> mock.call_count 2
- return_value¶
設定此值以配置呼叫 mock 時回傳的值:
>>> mock = Mock() >>> mock.return_value = 'fish' >>> mock() 'fish'
預設的回傳值是一個 mock 物件,你也可以按照正常的方式配置它:
>>> mock = Mock() >>> mock.return_value.attribute = sentinel.Attribute >>> mock.return_value() <Mock name='mock()()' id='...'> >>> mock.return_value.assert_called_with()
return_value
也可以在建構函式中設定:>>> mock = Mock(return_value=3) >>> mock.return_value 3 >>> mock() 3
- side_effect¶
這可以是一個在呼叫 mock 時要呼叫的函式、一個可疊代物件,或者要引發的例外(類別或實例)。
如果你傳遞一個函式,它將被呼叫,其引數與 mock 相同,且除非該函式回傳
DEFAULT
單例 (singleton),否則對 mock 的呼叫將回傳函式回傳的任何值。如果函式回傳DEFAULT
,那麼 mock 將回傳其正常的回傳值(從return_value
得到)。如果你傳遞一個可疊代物件,它將被用於檢索一個疊代器,該疊代器必須在每次呼叫時產出 (yield) 一個值。這個值可以是要引發的例外實例,或者是對 mock 呼叫時要回傳的值(處理
DEFAULT
的方式與函式的狀況相同)。以下是一個引發例外的 mock 的範例(用於測試 API 的例外處理):
>>> mock = Mock() >>> mock.side_effect = Exception('Boom!') >>> mock() Traceback (most recent call last): ... Exception: Boom!
使用
side_effect
回傳一連串值的範例:>>> mock = Mock() >>> mock.side_effect = [3, 2, 1] >>> mock(), mock(), mock() (3, 2, 1)
使用可被呼叫物件的範例:
>>> mock = Mock(return_value=3) >>> def side_effect(*args, **kwargs): ... return DEFAULT ... >>> mock.side_effect = side_effect >>> mock() 3
side_effect
可以在建構函式中設定。以下是一個範例,它將 mock 被呼叫時給的值加一並回傳:>>> side_effect = lambda value: value + 1 >>> mock = Mock(side_effect=side_effect) >>> mock(3) 4 >>> mock(-8) -7
將
side_effect
設定為None
可以清除它:>>> m = Mock(side_effect=KeyError, return_value=3) >>> m() Traceback (most recent call last): ... KeyError >>> m.side_effect = None >>> m() 3
- call_args¶
這會是
None
(如果 mock 尚未被呼叫),或是 mock 上次被呼叫時使用的引數。這將以元組的形式呈現:第一個成員 (member),其可以通過args
屬性訪問,是 mock 被呼叫時傳遞的所有有序引數(或一個空元組)。第二個成員,其可以通過kwargs
屬性訪問,是所有關鍵字引數(或一個空字典)。>>> mock = Mock(return_value=None) >>> print(mock.call_args) None >>> mock() >>> mock.call_args call() >>> mock.call_args == () True >>> mock(3, 4) >>> mock.call_args call(3, 4) >>> mock.call_args == ((3, 4),) True >>> mock.call_args.args (3, 4) >>> mock.call_args.kwargs {} >>> mock(3, 4, 5, key='fish', next='w00t!') >>> mock.call_args call(3, 4, 5, key='fish', next='w00t!') >>> mock.call_args.args (3, 4, 5) >>> mock.call_args.kwargs {'key': 'fish', 'next': 'w00t!'}
call_args
,以及串列call_args_list
、method_calls
和mock_calls
的成員都是call
物件。這些都是元組,因此可以解包以獲取各個引數並進行更複雜的斷言。參見 calls as tuples。在 3.8 版的變更: 新增
args
與kwargs
特性。
- call_args_list¶
這是按順序列出所有呼叫 mock 物件的串列(因此串列的長度表示它被呼叫的次數)。在任何呼叫發生之前,它會是一個空的串列。
call
物件可用於方便地建構呼叫的串列,以便與call_args_list
進行比較。>>> mock = Mock(return_value=None) >>> mock() >>> mock(3, 4) >>> mock(key='fish', next='w00t!') >>> mock.call_args_list [call(), call(3, 4), call(key='fish', next='w00t!')] >>> expected = [(), ((3, 4),), ({'key': 'fish', 'next': 'w00t!'},)] >>> mock.call_args_list == expected True
call_args_list
的成員都是call
物件。這些物件可以被拆包為元組,以取得各個引數。參見 calls as tuples。
- method_calls¶
除了追蹤對自身的呼叫之外,mock 還會追蹤對方法和屬性的呼叫,以及它們(這些方法和屬性)的方法和屬性:
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.property.method.attribute() <Mock name='mock.property.method.attribute()' id='...'> >>> mock.method_calls [call.method(), call.property.method.attribute()]
method_calls
的成員都是call
物件。這些物件可以拆包為元組,以取得各個引數。參見 calls as tuples。
- mock_calls¶
mock_calls
記錄了 所有 對 mock 物件的呼叫,包含其方法、魔術方法以及回傳值 mock。>>> mock = MagicMock() >>> result = mock(1, 2, 3) >>> mock.first(a=3) <MagicMock name='mock.first()' id='...'> >>> mock.second() <MagicMock name='mock.second()' id='...'> >>> int(mock) 1 >>> result(1) <MagicMock name='mock()()' id='...'> >>> expected = [call(1, 2, 3), call.first(a=3), call.second(), ... call.__int__(), call()(1)] >>> mock.mock_calls == expected True
method_calls
的成員都是call
物件。這些物件可以拆包為元組,以取得各個引數。參見 calls as tuples。備註
mock_calls
記錄的方式意味著在進行嵌套呼叫時,上代 (ancestor) 呼叫的參數不會被記錄,因此在比較時它們將始終相等:>>> mock = MagicMock() >>> mock.top(a=3).bottom() <MagicMock name='mock.top().bottom()' id='...'> >>> mock.mock_calls [call.top(a=3), call.top().bottom()] >>> mock.mock_calls[-1] == call.top(a=-1).bottom() True
- __class__¶
通常,物件的
__class__
屬性會回傳它的型別。但對於擁有spec
的 mock 物件,__class__
會回傳 spec 的類別。這允許 mock 物件通過對它們所替代或偽裝的物件進行的isinstance()
測試:>>> mock = Mock(spec=3) >>> isinstance(mock, int) True
__class__
可以被指定,這允許 mock 通過isinstance()
檢查,而不需要強制使用 spec:>>> mock = Mock() >>> mock.__class__ = dict >>> isinstance(mock, dict) True
- class unittest.mock.NonCallableMock(spec=None, wraps=None, name=None, spec_set=None, **kwargs)¶
Mock
的一個不可呼叫版本。建構函式參數的意義與Mock
相同,其例外為 return_value 和 side_effect 在不可呼叫的 mock 上無意義。
使用類別或實例作為 spec
或 spec_set
的 mock 物件能夠通過 isinstance()
測試:
>>> mock = Mock(spec=SomeClass)
>>> isinstance(mock, SomeClass)
True
>>> mock = Mock(spec_set=SomeClass())
>>> isinstance(mock, SomeClass)
True
Mock
類別支援 mock 魔術方法。細節請參考魔術方法。
Mock類別和 patch()
裝飾器於組態時接受任意的關鍵字引數。對於 patch()
裝飾器,這些關鍵字會傳遞給正在建立 mock 的建構函式。這些關鍵字引數用於配置 mock 的屬性:
>>> m = MagicMock(attribute=3, other='fish')
>>> m.attribute
3
>>> m.other
'fish'
Child mock 的回傳值和 side effect 可以使用使用點記法進行設置。由於你無法直接在呼叫中使用帶有點 (.) 的名稱,因此你必須建立一個字典並使用 **
解包:
>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> mock = Mock(some_attribute='eggs', **attrs)
>>> mock.some_attribute
'eggs'
>>> mock.method()
3
>>> mock.other()
Traceback (most recent call last):
...
KeyError
在匹配對 mock 的呼叫時,使用 spec(或 spec_set)建立的可呼叫 mock 將會內省規格物件的簽名 (signature)。因此,它可以匹配實際呼叫的引數,無論它們是按位置傳遞還是按名稱傳遞:
>>> def f(a, b, c): pass
...
>>> mock = Mock(spec=f)
>>> mock(1, 2, c=3)
<Mock name='mock()' id='140161580456576'>
>>> mock.assert_called_with(1, 2, 3)
>>> mock.assert_called_with(a=1, b=2, c=3)
這適用於 assert_called_with()
、assert_called_once_with()
、assert_has_calls()
和 assert_any_call()
。在使用 Autospeccing ,它還適用於 mock 物件的方法呼叫。
在 3.4 版的變更: 對於已經設置了規格(spec)和自動規格(autospec)的 mock 物件,新增簽名內省功能。
- class unittest.mock.PropertyMock(*args, **kwargs)¶
一個理應在類別上當成
property
或其他 descriptor 的 mock。PropertyMock
提供了__get__()
和__set__()
方法,因此你可以在它被提取時指定回傳值。從物件中提取
PropertyMock
實例會不帶任何引數呼叫 mock。設定它則會用設定的值來呼叫 mock:>>> class Foo: ... @property ... def foo(self): ... return 'something' ... @foo.setter ... def foo(self, value): ... pass ... >>> with patch('__main__.Foo.foo', new_callable=PropertyMock) as mock_foo: ... mock_foo.return_value = 'mockity-mock' ... this_foo = Foo() ... print(this_foo.foo) ... this_foo.foo = 6 ... mockity-mock >>> mock_foo.mock_calls [call(), call(6)]
由於 mock 屬性的儲存方式,你無法直接將 PropertyMock
附加到 mock 物件。但是你可以將其附加到 mock 型別的物件:
>>> m = MagicMock()
>>> p = PropertyMock(return_value=3)
>>> type(m).foo = p
>>> m.foo
3
>>> p.assert_called_once_with()
- class unittest.mock.AsyncMock(spec=None, side_effect=None, return_value=DEFAULT, wraps=None, name=None, spec_set=None, unsafe=False, **kwargs)¶
MagicMock
的非同步版本。AsyncMock
物件的表現將被視為非同步函式,並且呼叫的結果是一個可等待物件。>>> mock = AsyncMock() >>> asyncio.iscoroutinefunction(mock) True >>> inspect.isawaitable(mock()) True
mock()
的結果是一個非同步函式,在它被等待後將具有side_effect
或return_value
的結果:如果
side_effect
是一個函式,非同步函式將回傳該函式的結果,如果
side_effect
是一個例外,則非同步函式將引發該例外,如果
side_effect
是一個可疊代物件,非同步函式將回傳可疊代物件的下一個值,但如果結果序列耗盡,將立即引發StopAsyncIteration
,如果
side_effect
沒有被定義,非同步函式將回傳由return_value
定義的值,因此在預設情況下,非同步函式回傳一個新的AsyncMock
物件。
將
Mock
或MagicMock
的 spec 設定為非同步函式將導致在呼叫後回傳一個協程物件。>>> async def async_func(): pass ... >>> mock = MagicMock(async_func) >>> mock <MagicMock spec='function' id='...'> >>> mock() <coroutine object AsyncMockMixin._mock_call at ...>
將
Mock
、MagicMock
或AsyncMock
的 spec 設定為具有同步和非同步函式的類別,會自動檢測同步函式並將其設定為MagicMock
(如果上代 mock 為AsyncMock
或MagicMock
)或Mock
(如果上代 mock 為Mock
)。所有非同步函式將被設定為AsyncMock
。>>> class ExampleClass: ... def sync_foo(): ... pass ... async def async_foo(): ... pass ... >>> a_mock = AsyncMock(ExampleClass) >>> a_mock.sync_foo <MagicMock name='mock.sync_foo' id='...'> >>> a_mock.async_foo <AsyncMock name='mock.async_foo' id='...'> >>> mock = Mock(ExampleClass) >>> mock.sync_foo <Mock name='mock.sync_foo' id='...'> >>> mock.async_foo <AsyncMock name='mock.async_foo' id='...'>
在 3.8 版新加入.
- assert_awaited()¶
斷言 mock 至少被等待過一次。請注意這與物件是否被呼叫是分開的,
await
關鍵字必須被使用:>>> mock = AsyncMock() >>> async def main(coroutine_mock): ... await coroutine_mock ... >>> coroutine_mock = mock() >>> mock.called True >>> mock.assert_awaited() Traceback (most recent call last): ... AssertionError: Expected mock to have been awaited. >>> asyncio.run(main(coroutine_mock)) >>> mock.assert_awaited()
- assert_awaited_once()¶
斷言 mock 正好被等待了一次。
>>> mock = AsyncMock() >>> async def main(): ... await mock() ... >>> asyncio.run(main()) >>> mock.assert_awaited_once() >>> asyncio.run(main()) >>> mock.method.assert_awaited_once() Traceback (most recent call last): ... AssertionError: Expected mock to have been awaited once. Awaited 2 times.
- assert_awaited_with(*args, **kwargs)¶
斷言最後一次等待使用了指定的引數。
>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> asyncio.run(main('foo', bar='bar')) >>> mock.assert_awaited_with('foo', bar='bar') >>> mock.assert_awaited_with('other') Traceback (most recent call last): ... AssertionError: expected call not found. Expected: mock('other') Actual: mock('foo', bar='bar')
- assert_awaited_once_with(*args, **kwargs)¶
斷言 mock 只被等待了一次並使用了指定的引數。
>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> asyncio.run(main('foo', bar='bar')) >>> mock.assert_awaited_once_with('foo', bar='bar') >>> asyncio.run(main('foo', bar='bar')) >>> mock.assert_awaited_once_with('foo', bar='bar') Traceback (most recent call last): ... AssertionError: Expected mock to have been awaited once. Awaited 2 times.
- assert_any_await(*args, **kwargs)¶
斷言 mock 曾經被使用指定的引數等待過。
>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> asyncio.run(main('foo', bar='bar')) >>> asyncio.run(main('hello')) >>> mock.assert_any_await('foo', bar='bar') >>> mock.assert_any_await('other') Traceback (most recent call last): ... AssertionError: mock('other') await not found
- assert_has_awaits(calls, any_order=False)¶
斷言 mock 已被使用指定的呼叫進行等待。
await_args_list
串列將被檢查以確認等待的內容。如果 any_order 為 false,則等待必須按照順序。指定的等待之前或之後可以有額外的呼叫。
如果 any_order 為 true,則等待可以以任何順序出現,但它們必須全部出現在
await_args_list
中。>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> calls = [call("foo"), call("bar")] >>> mock.assert_has_awaits(calls) Traceback (most recent call last): ... AssertionError: Awaits not found. Expected: [call('foo'), call('bar')] Actual: [] >>> asyncio.run(main('foo')) >>> asyncio.run(main('bar')) >>> mock.assert_has_awaits(calls)
- assert_not_awaited()¶
斷言 mock 從未被等待。
>>> mock = AsyncMock() >>> mock.assert_not_awaited()
- reset_mock(*args, **kwargs)¶
參見
Mock.reset_mock()
。同時將await_count
設定為 0,await_args
設定為 None,並清除await_args_list
。
- await_count¶
一個整數,用來記錄 mock 物件已被等待的次數。
>>> mock = AsyncMock() >>> async def main(): ... await mock() ... >>> asyncio.run(main()) >>> mock.await_count 1 >>> asyncio.run(main()) >>> mock.await_count 2
- await_args¶
這可能是
None
(如果 mock 尚未被等待),或者是上次等待 mock 時使用的引數。與Mock.call_args
的功能相同。>>> mock = AsyncMock() >>> async def main(*args): ... await mock(*args) ... >>> mock.await_args >>> asyncio.run(main('foo')) >>> mock.await_args call('foo') >>> asyncio.run(main('bar')) >>> mock.await_args call('bar')
- await_args_list¶
這是一個按照順序記錄 mock 物件所有等待的串列(因此串列的長度表示該物件已被等待的次數)。在進行任何等待之前,此串列為空。
>>> mock = AsyncMock() >>> async def main(*args): ... await mock(*args) ... >>> mock.await_args_list [] >>> asyncio.run(main('foo')) >>> mock.await_args_list [call('foo')] >>> asyncio.run(main('bar')) >>> mock.await_args_list [call('foo'), call('bar')]
呼叫¶
Mock objects are callable. The call will return the value set as the
return_value
attribute. The default return value is a new Mock
object; it is created the first time the return value is accessed (either
explicitly or by calling the Mock) - but it is stored and the same one
returned each time.
Calls made to the object will be recorded in the attributes
like call_args
and call_args_list
.
If side_effect
is set then it will be called after the call has
been recorded, so if side_effect
raises an exception the call is still
recorded.
The simplest way to make a mock raise an exception when called is to make
side_effect
an exception class or instance:
>>> m = MagicMock(side_effect=IndexError)
>>> m(1, 2, 3)
Traceback (most recent call last):
...
IndexError
>>> m.mock_calls
[call(1, 2, 3)]
>>> m.side_effect = KeyError('Bang!')
>>> m('two', 'three', 'four')
Traceback (most recent call last):
...
KeyError: 'Bang!'
>>> m.mock_calls
[call(1, 2, 3), call('two', 'three', 'four')]
If side_effect
is a function then whatever that function returns is what
calls to the mock return. The side_effect
function is called with the
same arguments as the mock. This allows you to vary the return value of the
call dynamically, based on the input:
>>> def side_effect(value):
... return value + 1
...
>>> m = MagicMock(side_effect=side_effect)
>>> m(1)
2
>>> m(2)
3
>>> m.mock_calls
[call(1), call(2)]
If you want the mock to still return the default return value (a new mock), or
any set return value, then there are two ways of doing this. Either return
mock.return_value
from inside side_effect
, or return DEFAULT
:
>>> m = MagicMock()
>>> def side_effect(*args, **kwargs):
... return m.return_value
...
>>> m.side_effect = side_effect
>>> m.return_value = 3
>>> m()
3
>>> def side_effect(*args, **kwargs):
... return DEFAULT
...
>>> m.side_effect = side_effect
>>> m()
3
To remove a side_effect
, and return to the default behaviour, set the
side_effect
to None
:
>>> m = MagicMock(return_value=6)
>>> def side_effect(*args, **kwargs):
... return 3
...
>>> m.side_effect = side_effect
>>> m()
3
>>> m.side_effect = None
>>> m()
6
The side_effect
can also be any iterable object. Repeated calls to the mock
will return values from the iterable (until the iterable is exhausted and
a StopIteration
is raised):
>>> m = MagicMock(side_effect=[1, 2, 3])
>>> m()
1
>>> m()
2
>>> m()
3
>>> m()
Traceback (most recent call last):
...
StopIteration
If any members of the iterable are exceptions they will be raised instead of returned:
>>> iterable = (33, ValueError, 66)
>>> m = MagicMock(side_effect=iterable)
>>> m()
33
>>> m()
Traceback (most recent call last):
...
ValueError
>>> m()
66
Deleting Attributes¶
Mock objects create attributes on demand. This allows them to pretend to be objects of any type.
You may want a mock object to return False
to a hasattr()
call, or raise an
AttributeError
when an attribute is fetched. You can do this by providing
an object as a spec
for a mock, but that isn't always convenient.
You "block" attributes by deleting them. Once deleted, accessing an attribute
will raise an AttributeError
.
>>> mock = MagicMock()
>>> hasattr(mock, 'm')
True
>>> del mock.m
>>> hasattr(mock, 'm')
False
>>> del mock.f
>>> mock.f
Traceback (most recent call last):
...
AttributeError: f
Mock names and the name attribute¶
Since "name" is an argument to the Mock
constructor, if you want your
mock object to have a "name" attribute you can't just pass it in at creation
time. There are two alternatives. One option is to use
configure_mock()
:
>>> mock = MagicMock()
>>> mock.configure_mock(name='my_name')
>>> mock.name
'my_name'
A simpler option is to simply set the "name" attribute after mock creation:
>>> mock = MagicMock()
>>> mock.name = "foo"
Attaching Mocks as Attributes¶
When you attach a mock as an attribute of another mock (or as the return
value) it becomes a "child" of that mock. Calls to the child are recorded in
the method_calls
and mock_calls
attributes of the
parent. This is useful for configuring child mocks and then attaching them to
the parent, or for attaching mocks to a parent that records all calls to the
children and allows you to make assertions about the order of calls between
mocks:
>>> parent = MagicMock()
>>> child1 = MagicMock(return_value=None)
>>> child2 = MagicMock(return_value=None)
>>> parent.child1 = child1
>>> parent.child2 = child2
>>> child1(1)
>>> child2(2)
>>> parent.mock_calls
[call.child1(1), call.child2(2)]
The exception to this is if the mock has a name. This allows you to prevent the "parenting" if for some reason you don't want it to happen.
>>> mock = MagicMock()
>>> not_a_child = MagicMock(name='not-a-child')
>>> mock.attribute = not_a_child
>>> mock.attribute()
<MagicMock name='not-a-child()' id='...'>
>>> mock.mock_calls
[]
Mocks created for you by patch()
are automatically given names. To
attach mocks that have names to a parent you use the attach_mock()
method:
>>> thing1 = object()
>>> thing2 = object()
>>> parent = MagicMock()
>>> with patch('__main__.thing1', return_value=None) as child1:
... with patch('__main__.thing2', return_value=None) as child2:
... parent.attach_mock(child1, 'child1')
... parent.attach_mock(child2, 'child2')
... child1('one')
... child2('two')
...
>>> parent.mock_calls
[call.child1('one'), call.child2('two')]
The patchers¶
The patch decorators are used for patching objects only within the scope of the function they decorate. They automatically handle the unpatching for you, even if exceptions are raised. All of these functions can also be used in with statements or as class decorators.
patch¶
備註
The key is to do the patching in the right namespace. See the section where to patch.
- unittest.mock.patch(target, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)¶
patch()
acts as a function decorator, class decorator or a context manager. Inside the body of the function or with statement, the target is patched with a new object. When the function/with statement exits the patch is undone.If new is omitted, then the target is replaced with an
AsyncMock
if the patched object is an async function or aMagicMock
otherwise. Ifpatch()
is used as a decorator and new is omitted, the created mock is passed in as an extra argument to the decorated function. Ifpatch()
is used as a context manager the created mock is returned by the context manager.target should be a string in the form
'package.module.ClassName'
. The target is imported and the specified object replaced with the new object, so the target must be importable from the environment you are callingpatch()
from. The target is imported when the decorated function is executed, not at decoration time.The spec and spec_set keyword arguments are passed to the
MagicMock
if patch is creating one for you.In addition you can pass
spec=True
orspec_set=True
, which causes patch to pass in the object being mocked as the spec/spec_set object.new_callable allows you to specify a different class, or callable object, that will be called to create the new object. By default
AsyncMock
is used for async functions andMagicMock
for the rest.A more powerful form of spec is autospec. If you set
autospec=True
then the mock will be created with a spec from the object being replaced. All attributes of the mock will also have the spec of the corresponding attribute of the object being replaced. Methods and functions being mocked will have their arguments checked and will raise aTypeError
if they are called with the wrong signature. For mocks replacing a class, their return value (the 'instance') will have the same spec as the class. See thecreate_autospec()
function and Autospeccing.Instead of
autospec=True
you can passautospec=some_object
to use an arbitrary object as the spec instead of the one being replaced.By default
patch()
will fail to replace attributes that don't exist. If you pass increate=True
, and the attribute doesn't exist, patch will create the attribute for you when the patched function is called, and delete it again after the patched function has exited. This is useful for writing tests against attributes that your production code creates at runtime. It is off by default because it can be dangerous. With it switched on you can write passing tests against APIs that don't actually exist!備註
在 3.5 版的變更: If you are patching builtins in a module then you don't need to pass
create=True
, it will be added by default.Patch can be used as a
TestCase
class decorator. It works by decorating each test method in the class. This reduces the boilerplate code when your test methods share a common patchings set.patch()
finds tests by looking for method names that start withpatch.TEST_PREFIX
. By default this is'test'
, which matches the wayunittest
finds tests. You can specify an alternative prefix by settingpatch.TEST_PREFIX
.Patch can be used as a context manager, with the with statement. Here the patching applies to the indented block after the with statement. If you use "as" then the patched object will be bound to the name after the "as"; very useful if
patch()
is creating a mock object for you.patch()
takes arbitrary keyword arguments. These will be passed toAsyncMock
if the patched object is asynchronous, toMagicMock
otherwise or to new_callable if specified.patch.dict(...)
,patch.multiple(...)
andpatch.object(...)
are available for alternate use-cases.
patch()
as function decorator, creating the mock for you and passing it into
the decorated function:
>>> @patch('__main__.SomeClass')
... def function(normal_argument, mock_class):
... print(mock_class is SomeClass)
...
>>> function(None)
True
Patching a class replaces the class with a MagicMock
instance. If the
class is instantiated in the code under test then it will be the
return_value
of the mock that will be used.
If the class is instantiated multiple times you could use
side_effect
to return a new mock each time. Alternatively you
can set the return_value to be anything you want.
To configure return values on methods of instances on the patched class
you must do this on the return_value
. For example:
>>> class Class:
... def method(self):
... pass
...
>>> with patch('__main__.Class') as MockClass:
... instance = MockClass.return_value
... instance.method.return_value = 'foo'
... assert Class() is instance
... assert Class().method() == 'foo'
...
If you use spec or spec_set and patch()
is replacing a class, then the
return value of the created mock will have the same spec.
>>> Original = Class
>>> patcher = patch('__main__.Class', spec=True)
>>> MockClass = patcher.start()
>>> instance = MockClass()
>>> assert isinstance(instance, Original)
>>> patcher.stop()
The new_callable argument is useful where you want to use an alternative
class to the default MagicMock
for the created mock. For example, if
you wanted a NonCallableMock
to be used:
>>> thing = object()
>>> with patch('__main__.thing', new_callable=NonCallableMock) as mock_thing:
... assert thing is mock_thing
... thing()
...
Traceback (most recent call last):
...
TypeError: 'NonCallableMock' object is not callable
Another use case might be to replace an object with an io.StringIO
instance:
>>> from io import StringIO
>>> def foo():
... print('Something')
...
>>> @patch('sys.stdout', new_callable=StringIO)
... def test(mock_stdout):
... foo()
... assert mock_stdout.getvalue() == 'Something\n'
...
>>> test()
When patch()
is creating a mock for you, it is common that the first thing
you need to do is to configure the mock. Some of that configuration can be done
in the call to patch. Any arbitrary keywords you pass into the call will be
used to set attributes on the created mock:
>>> patcher = patch('__main__.thing', first='one', second='two')
>>> mock_thing = patcher.start()
>>> mock_thing.first
'one'
>>> mock_thing.second
'two'
As well as attributes on the created mock attributes, like the
return_value
and side_effect
, of child mocks can
also be configured. These aren't syntactically valid to pass in directly as
keyword arguments, but a dictionary with these as keys can still be expanded
into a patch()
call using **
:
>>> config = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> patcher = patch('__main__.thing', **config)
>>> mock_thing = patcher.start()
>>> mock_thing.method()
3
>>> mock_thing.other()
Traceback (most recent call last):
...
KeyError
By default, attempting to patch a function in a module (or a method or an
attribute in a class) that does not exist will fail with AttributeError
:
>>> @patch('sys.non_existing_attribute', 42)
... def test():
... assert sys.non_existing_attribute == 42
...
>>> test()
Traceback (most recent call last):
...
AttributeError: <module 'sys' (built-in)> does not have the attribute 'non_existing_attribute'
but adding create=True
in the call to patch()
will make the previous example
work as expected:
>>> @patch('sys.non_existing_attribute', 42, create=True)
... def test(mock_stdout):
... assert sys.non_existing_attribute == 42
...
>>> test()
patch.object¶
- patch.object(target, attribute, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)¶
patch the named member (attribute) on an object (target) with a mock object.
patch.object()
can be used as a decorator, class decorator or a context manager. Arguments new, spec, create, spec_set, autospec and new_callable have the same meaning as forpatch()
. Likepatch()
,patch.object()
takes arbitrary keyword arguments for configuring the mock object it creates.When used as a class decorator
patch.object()
honourspatch.TEST_PREFIX
for choosing which methods to wrap.
You can either call patch.object()
with three arguments or two arguments. The
three argument form takes the object to be patched, the attribute name and the
object to replace the attribute with.
When calling with the two argument form you omit the replacement object, and a mock is created for you and passed in as an extra argument to the decorated function:
>>> @patch.object(SomeClass, 'class_method')
... def test(mock_method):
... SomeClass.class_method(3)
... mock_method.assert_called_with(3)
...
>>> test()
spec, create and the other arguments to patch.object()
have the same
meaning as they do for patch()
.
patch.dict¶
- patch.dict(in_dict, values=(), clear=False, **kwargs)¶
Patch a dictionary, or dictionary like object, and restore the dictionary to its original state after the test.
in_dict can be a dictionary or a mapping like container. If it is a mapping then it must at least support getting, setting and deleting items plus iterating over keys.
in_dict can also be a string specifying the name of the dictionary, which will then be fetched by importing it.
values can be a dictionary of values to set in the dictionary. values can also be an iterable of
(key, value)
pairs.If clear is true then the dictionary will be cleared before the new values are set.
patch.dict()
can also be called with arbitrary keyword arguments to set values in the dictionary.在 3.8 版的變更:
patch.dict()
now returns the patched dictionary when used as a context manager.
patch.dict()
can be used as a context manager, decorator or class
decorator:
>>> foo = {}
>>> @patch.dict(foo, {'newkey': 'newvalue'})
... def test():
... assert foo == {'newkey': 'newvalue'}
...
>>> test()
>>> assert foo == {}
When used as a class decorator patch.dict()
honours
patch.TEST_PREFIX
(default to 'test'
) for choosing which methods to wrap:
>>> import os
>>> import unittest
>>> from unittest.mock import patch
>>> @patch.dict('os.environ', {'newkey': 'newvalue'})
... class TestSample(unittest.TestCase):
... def test_sample(self):
... self.assertEqual(os.environ['newkey'], 'newvalue')
If you want to use a different prefix for your test, you can inform the
patchers of the different prefix by setting patch.TEST_PREFIX
. For
more details about how to change the value of see TEST_PREFIX.
patch.dict()
can be used to add members to a dictionary, or simply let a test
change a dictionary, and ensure the dictionary is restored when the test
ends.
>>> foo = {}
>>> with patch.dict(foo, {'newkey': 'newvalue'}) as patched_foo:
... assert foo == {'newkey': 'newvalue'}
... assert patched_foo == {'newkey': 'newvalue'}
... # You can add, update or delete keys of foo (or patched_foo, it's the same dict)
... patched_foo['spam'] = 'eggs'
...
>>> assert foo == {}
>>> assert patched_foo == {}
>>> import os
>>> with patch.dict('os.environ', {'newkey': 'newvalue'}):
... print(os.environ['newkey'])
...
newvalue
>>> assert 'newkey' not in os.environ
Keywords can be used in the patch.dict()
call to set values in the dictionary:
>>> mymodule = MagicMock()
>>> mymodule.function.return_value = 'fish'
>>> with patch.dict('sys.modules', mymodule=mymodule):
... import mymodule
... mymodule.function('some', 'args')
...
'fish'
patch.dict()
can be used with dictionary like objects that aren't actually
dictionaries. At the very minimum they must support item getting, setting,
deleting and either iteration or membership test. This corresponds to the
magic methods __getitem__()
, __setitem__()
,
__delitem__()
and either __iter__()
or
__contains__()
.
>>> class Container:
... def __init__(self):
... self.values = {}
... def __getitem__(self, name):
... return self.values[name]
... def __setitem__(self, name, value):
... self.values[name] = value
... def __delitem__(self, name):
... del self.values[name]
... def __iter__(self):
... return iter(self.values)
...
>>> thing = Container()
>>> thing['one'] = 1
>>> with patch.dict(thing, one=2, two=3):
... assert thing['one'] == 2
... assert thing['two'] == 3
...
>>> assert thing['one'] == 1
>>> assert list(thing) == ['one']
patch.multiple¶
- patch.multiple(target, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)¶
Perform multiple patches in a single call. It takes the object to be patched (either as an object or a string to fetch the object by importing) and keyword arguments for the patches:
with patch.multiple(settings, FIRST_PATCH='one', SECOND_PATCH='two'): ...
Use
DEFAULT
as the value if you wantpatch.multiple()
to create mocks for you. In this case the created mocks are passed into a decorated function by keyword, and a dictionary is returned whenpatch.multiple()
is used as a context manager.patch.multiple()
can be used as a decorator, class decorator or a context manager. The arguments spec, spec_set, create, autospec and new_callable have the same meaning as forpatch()
. These arguments will be applied to all patches done bypatch.multiple()
.When used as a class decorator
patch.multiple()
honourspatch.TEST_PREFIX
for choosing which methods to wrap.
If you want patch.multiple()
to create mocks for you, then you can use
DEFAULT
as the value. If you use patch.multiple()
as a decorator
then the created mocks are passed into the decorated function by keyword.
>>> thing = object()
>>> other = object()
>>> @patch.multiple('__main__', thing=DEFAULT, other=DEFAULT)
... def test_function(thing, other):
... assert isinstance(thing, MagicMock)
... assert isinstance(other, MagicMock)
...
>>> test_function()
patch.multiple()
can be nested with other patch
decorators, but put arguments
passed by keyword after any of the standard arguments created by patch()
:
>>> @patch('sys.exit')
... @patch.multiple('__main__', thing=DEFAULT, other=DEFAULT)
... def test_function(mock_exit, other, thing):
... assert 'other' in repr(other)
... assert 'thing' in repr(thing)
... assert 'exit' in repr(mock_exit)
...
>>> test_function()
If patch.multiple()
is used as a context manager, the value returned by the
context manager is a dictionary where created mocks are keyed by name:
>>> with patch.multiple('__main__', thing=DEFAULT, other=DEFAULT) as values:
... assert 'other' in repr(values['other'])
... assert 'thing' in repr(values['thing'])
... assert values['thing'] is thing
... assert values['other'] is other
...
patch methods: start and stop¶
All the patchers have start()
and stop()
methods. These make it simpler to do
patching in setUp
methods or where you want to do multiple patches without
nesting decorators or with statements.
To use them call patch()
, patch.object()
or patch.dict()
as
normal and keep a reference to the returned patcher
object. You can then
call start()
to put the patch in place and stop()
to undo it.
If you are using patch()
to create a mock for you then it will be returned by
the call to patcher.start
.
>>> patcher = patch('package.module.ClassName')
>>> from package import module
>>> original = module.ClassName
>>> new_mock = patcher.start()
>>> assert module.ClassName is not original
>>> assert module.ClassName is new_mock
>>> patcher.stop()
>>> assert module.ClassName is original
>>> assert module.ClassName is not new_mock
A typical use case for this might be for doing multiple patches in the setUp
method of a TestCase
:
>>> class MyTest(unittest.TestCase):
... def setUp(self):
... self.patcher1 = patch('package.module.Class1')
... self.patcher2 = patch('package.module.Class2')
... self.MockClass1 = self.patcher1.start()
... self.MockClass2 = self.patcher2.start()
...
... def tearDown(self):
... self.patcher1.stop()
... self.patcher2.stop()
...
... def test_something(self):
... assert package.module.Class1 is self.MockClass1
... assert package.module.Class2 is self.MockClass2
...
>>> MyTest('test_something').run()
警示
If you use this technique you must ensure that the patching is "undone" by
calling stop
. This can be fiddlier than you might think, because if an
exception is raised in the setUp
then tearDown
is not called.
unittest.TestCase.addCleanup()
makes this easier:
>>> class MyTest(unittest.TestCase):
... def setUp(self):
... patcher = patch('package.module.Class')
... self.MockClass = patcher.start()
... self.addCleanup(patcher.stop)
...
... def test_something(self):
... assert package.module.Class is self.MockClass
...
As an added bonus you no longer need to keep a reference to the patcher
object.
It is also possible to stop all patches which have been started by using
patch.stopall()
.
- patch.stopall()¶
Stop all active patches. Only stops patches started with
start
.
patch builtins¶
You can patch any builtins within a module. The following example patches
builtin ord()
:
>>> @patch('__main__.ord')
... def test(mock_ord):
... mock_ord.return_value = 101
... print(ord('c'))
...
>>> test()
101
TEST_PREFIX¶
All of the patchers can be used as class decorators. When used in this way
they wrap every test method on the class. The patchers recognise methods that
start with 'test'
as being test methods. This is the same way that the
unittest.TestLoader
finds test methods by default.
It is possible that you want to use a different prefix for your tests. You can
inform the patchers of the different prefix by setting patch.TEST_PREFIX
:
>>> patch.TEST_PREFIX = 'foo'
>>> value = 3
>>>
>>> @patch('__main__.value', 'not three')
... class Thing:
... def foo_one(self):
... print(value)
... def foo_two(self):
... print(value)
...
>>>
>>> Thing().foo_one()
not three
>>> Thing().foo_two()
not three
>>> value
3
Nesting Patch Decorators¶
If you want to perform multiple patches then you can simply stack up the decorators.
You can stack up multiple patch decorators using this pattern:
>>> @patch.object(SomeClass, 'class_method')
... @patch.object(SomeClass, 'static_method')
... def test(mock1, mock2):
... assert SomeClass.static_method is mock1
... assert SomeClass.class_method is mock2
... SomeClass.static_method('foo')
... SomeClass.class_method('bar')
... return mock1, mock2
...
>>> mock1, mock2 = test()
>>> mock1.assert_called_once_with('foo')
>>> mock2.assert_called_once_with('bar')
Note that the decorators are applied from the bottom upwards. This is the standard way that Python applies decorators. The order of the created mocks passed into your test function matches this order.
Where to patch¶
patch()
works by (temporarily) changing the object that a name points to with
another one. There can be many names pointing to any individual object, so
for patching to work you must ensure that you patch the name used by the system
under test.
The basic principle is that you patch where an object is looked up, which is not necessarily the same place as where it is defined. A couple of examples will help to clarify this.
Imagine we have a project that we want to test with the following structure:
a.py
-> Defines SomeClass
b.py
-> from a import SomeClass
-> some_function instantiates SomeClass
Now we want to test some_function
but we want to mock out SomeClass
using
patch()
. The problem is that when we import module b, which we will have to
do then it imports SomeClass
from module a. If we use patch()
to mock out
a.SomeClass
then it will have no effect on our test; module b already has a
reference to the real SomeClass
and it looks like our patching had no
effect.
The key is to patch out SomeClass
where it is used (or where it is looked up).
In this case some_function
will actually look up SomeClass
in module b,
where we have imported it. The patching should look like:
@patch('b.SomeClass')
However, consider the alternative scenario where instead of from a import
SomeClass
module b does import a
and some_function
uses a.SomeClass
. Both
of these import forms are common. In this case the class we want to patch is
being looked up in the module and so we have to patch a.SomeClass
instead:
@patch('a.SomeClass')
Patching Descriptors and Proxy Objects¶
Both patch and patch.object correctly patch and restore descriptors: class methods, static methods and properties. You should patch these on the class rather than an instance. They also work with some objects that proxy attribute access, like the django settings object.
MagicMock and magic method support¶
Mocking Magic Methods¶
Mock
supports mocking the Python protocol methods, also known as
"magic methods". This allows mock objects to replace containers or other
objects that implement Python protocols.
Because magic methods are looked up differently from normal methods [2], this support has been specially implemented. This means that only specific magic methods are supported. The supported list includes almost all of them. If there are any missing that you need please let us know.
You mock magic methods by setting the method you are interested in to a function
or a mock instance. If you are using a function then it must take self
as
the first argument [3].
>>> def __str__(self):
... return 'fooble'
...
>>> mock = Mock()
>>> mock.__str__ = __str__
>>> str(mock)
'fooble'
>>> mock = Mock()
>>> mock.__str__ = Mock()
>>> mock.__str__.return_value = 'fooble'
>>> str(mock)
'fooble'
>>> mock = Mock()
>>> mock.__iter__ = Mock(return_value=iter([]))
>>> list(mock)
[]
One use case for this is for mocking objects used as context managers in a
with
statement:
>>> mock = Mock()
>>> mock.__enter__ = Mock(return_value='foo')
>>> mock.__exit__ = Mock(return_value=False)
>>> with mock as m:
... assert m == 'foo'
...
>>> mock.__enter__.assert_called_with()
>>> mock.__exit__.assert_called_with(None, None, None)
Calls to magic methods do not appear in method_calls
, but they
are recorded in mock_calls
.
備註
If you use the spec keyword argument to create a mock then attempting to
set a magic method that isn't in the spec will raise an AttributeError
.
The full list of supported magic methods is:
__hash__
、__sizeof__
、__repr__
和__str__
__dir__
、__format__
和__subclasses__
__round__
、__floor__
、__trunc__
和__ceil__
Comparisons:
__lt__
,__gt__
,__le__
,__ge__
,__eq__
and__ne__
Container methods:
__getitem__
,__setitem__
,__delitem__
,__contains__
,__len__
,__iter__
,__reversed__
and__missing__
Context manager:
__enter__
,__exit__
,__aenter__
and__aexit__
Unary numeric methods:
__neg__
,__pos__
and__invert__
The numeric methods (including right hand and in-place variants):
__add__
,__sub__
,__mul__
,__matmul__
,__truediv__
,__floordiv__
,__mod__
,__divmod__
,__lshift__
,__rshift__
,__and__
,__xor__
,__or__
, and__pow__
Numeric conversion methods:
__complex__
,__int__
,__float__
and__index__
Descriptor methods:
__get__
,__set__
and__delete__
Pickling:
__reduce__
,__reduce_ex__
,__getinitargs__
,__getnewargs__
,__getstate__
and__setstate__
File system path representation:
__fspath__
Asynchronous iteration methods:
__aiter__
and__anext__
在 3.8 版的變更: Added support for os.PathLike.__fspath__()
.
在 3.8 版的變更: Added support for __aenter__
, __aexit__
, __aiter__
and __anext__
.
The following methods exist but are not supported as they are either in use by mock, can't be set dynamically, or can cause problems:
__getattr__
、__setattr__
、__init__
和__new__
__prepare__
、__instancecheck__
、__subclasscheck__
、__del__
Magic Mock¶
There are two MagicMock
variants: MagicMock
and NonCallableMagicMock
.
- class unittest.mock.MagicMock(*args, **kw)¶
MagicMock
is a subclass ofMock
with default implementations of most of the magic methods. You can useMagicMock
without having to configure the magic methods yourself.The constructor parameters have the same meaning as for
Mock
.If you use the spec or spec_set arguments then only magic methods that exist in the spec will be created.
- class unittest.mock.NonCallableMagicMock(*args, **kw)¶
A non-callable version of
MagicMock
.The constructor parameters have the same meaning as for
MagicMock
, with the exception of return_value and side_effect which have no meaning on a non-callable mock.
The magic methods are setup with MagicMock
objects, so you can configure them
and use them in the usual way:
>>> mock = MagicMock()
>>> mock[3] = 'fish'
>>> mock.__setitem__.assert_called_with(3, 'fish')
>>> mock.__getitem__.return_value = 'result'
>>> mock[2]
'result'
By default many of the protocol methods are required to return objects of a specific type. These methods are preconfigured with a default return value, so that they can be used without you having to do anything if you aren't interested in the return value. You can still set the return value manually if you want to change the default.
Methods and their defaults:
__lt__
:NotImplemented
__gt__
:NotImplemented
__le__
:NotImplemented
__ge__
:NotImplemented
__int__
:1
__contains__
:False
__len__
:0
__iter__
:iter([])
__exit__
:False
__aexit__
:False
__complex__
:1j
__float__
:1.0
__bool__
:True
__index__
:1
__hash__
: default hash for the mock__str__
: default str for the mock__sizeof__
: default sizeof for the mock
舉例來說:
>>> mock = MagicMock()
>>> int(mock)
1
>>> len(mock)
0
>>> list(mock)
[]
>>> object() in mock
False
The two equality methods, __eq__()
and __ne__()
, are special.
They do the default equality comparison on identity, using the
side_effect
attribute, unless you change their return value to
return something else:
>>> MagicMock() == 3
False
>>> MagicMock() != 3
True
>>> mock = MagicMock()
>>> mock.__eq__.return_value = True
>>> mock == 3
True
The return value of MagicMock.__iter__()
can be any iterable object and isn't
required to be an iterator:
>>> mock = MagicMock()
>>> mock.__iter__.return_value = ['a', 'b', 'c']
>>> list(mock)
['a', 'b', 'c']
>>> list(mock)
['a', 'b', 'c']
If the return value is an iterator, then iterating over it once will consume it and subsequent iterations will result in an empty list:
>>> mock.__iter__.return_value = iter(['a', 'b', 'c'])
>>> list(mock)
['a', 'b', 'c']
>>> list(mock)
[]
MagicMock
has all of the supported magic methods configured except for some
of the obscure and obsolete ones. You can still set these up if you want.
Magic methods that are supported but not setup by default in MagicMock
are:
__subclasses__
__dir__
__format__
__get__
、__set__
和__delete__
__reversed__
和__missing__
__reduce__
,__reduce_ex__
,__getinitargs__
,__getnewargs__
,__getstate__
and__setstate__
__getformat__
Magic methods should be looked up on the class rather than the instance. Different versions of Python are inconsistent about applying this rule. The supported protocol methods should work with all supported versions of Python.
The function is basically hooked up to the class, but each Mock
instance is kept isolated from the others.
Helpers¶
sentinel¶
- unittest.mock.sentinel¶
The
sentinel
object provides a convenient way of providing unique objects for your tests.Attributes are created on demand when you access them by name. Accessing the same attribute will always return the same object. The objects returned have a sensible repr so that test failure messages are readable.
Sometimes when testing you need to test that a specific object is passed as an
argument to another method, or returned. It can be common to create named
sentinel objects to test this. sentinel
provides a convenient way of
creating and testing the identity of objects like this.
In this example we monkey patch method
to return sentinel.some_object
:
>>> real = ProductionClass()
>>> real.method = Mock(name="method")
>>> real.method.return_value = sentinel.some_object
>>> result = real.method()
>>> assert result is sentinel.some_object
>>> result
sentinel.some_object
DEFAULT¶
- unittest.mock.DEFAULT¶
The
DEFAULT
object is a pre-created sentinel (actuallysentinel.DEFAULT
). It can be used byside_effect
functions to indicate that the normal return value should be used.
call¶
- unittest.mock.call(*args, **kwargs)¶
call()
is a helper object for making simpler assertions, for comparing withcall_args
,call_args_list
,mock_calls
andmethod_calls
.call()
can also be used withassert_has_calls()
.>>> m = MagicMock(return_value=None) >>> m(1, 2, a='foo', b='bar') >>> m() >>> m.call_args_list == [call(1, 2, a='foo', b='bar'), call()] True
- call.call_list()¶
For a call object that represents multiple calls,
call_list()
returns a list of all the intermediate calls as well as the final call.
call_list
is particularly useful for making assertions on "chained calls". A
chained call is multiple calls on a single line of code. This results in
multiple entries in mock_calls
on a mock. Manually constructing
the sequence of calls can be tedious.
call_list()
can construct the sequence of calls from the same
chained call:
>>> m = MagicMock()
>>> m(1).method(arg='foo').other('bar')(2.0)
<MagicMock name='mock().method().other()()' id='...'>
>>> kall = call(1).method(arg='foo').other('bar')(2.0)
>>> kall.call_list()
[call(1),
call().method(arg='foo'),
call().method().other('bar'),
call().method().other()(2.0)]
>>> m.mock_calls == kall.call_list()
True
A call
object is either a tuple of (positional args, keyword args) or
(name, positional args, keyword args) depending on how it was constructed. When
you construct them yourself this isn't particularly interesting, but the call
objects that are in the Mock.call_args
, Mock.call_args_list
and
Mock.mock_calls
attributes can be introspected to get at the individual
arguments they contain.
The call
objects in Mock.call_args
and Mock.call_args_list
are two-tuples of (positional args, keyword args) whereas the call
objects
in Mock.mock_calls
, along with ones you construct yourself, are
three-tuples of (name, positional args, keyword args).
You can use their "tupleness" to pull out the individual arguments for more complex introspection and assertions. The positional arguments are a tuple (an empty tuple if there are no positional arguments) and the keyword arguments are a dictionary:
>>> m = MagicMock(return_value=None)
>>> m(1, 2, 3, arg='one', arg2='two')
>>> kall = m.call_args
>>> kall.args
(1, 2, 3)
>>> kall.kwargs
{'arg': 'one', 'arg2': 'two'}
>>> kall.args is kall[0]
True
>>> kall.kwargs is kall[1]
True
>>> m = MagicMock()
>>> m.foo(4, 5, 6, arg='two', arg2='three')
<MagicMock name='mock.foo()' id='...'>
>>> kall = m.mock_calls[0]
>>> name, args, kwargs = kall
>>> name
'foo'
>>> args
(4, 5, 6)
>>> kwargs
{'arg': 'two', 'arg2': 'three'}
>>> name is m.mock_calls[0][0]
True
create_autospec¶
- unittest.mock.create_autospec(spec, spec_set=False, instance=False, **kwargs)¶
Create a mock object using another object as a spec. Attributes on the mock will use the corresponding attribute on the spec object as their spec.
Functions or methods being mocked will have their arguments checked to ensure that they are called with the correct signature.
If spec_set is
True
then attempting to set attributes that don't exist on the spec object will raise anAttributeError
.If a class is used as a spec then the return value of the mock (the instance of the class) will have the same spec. You can use a class as the spec for an instance object by passing
instance=True
. The returned mock will only be callable if instances of the mock are callable.create_autospec()
also takes arbitrary keyword arguments that are passed to the constructor of the created mock.
See Autospeccing for examples of how to use auto-speccing with
create_autospec()
and the autospec argument to patch()
.
在 3.8 版的變更: create_autospec()
now returns an AsyncMock
if the target is
an async function.
ANY¶
- unittest.mock.ANY¶
Sometimes you may need to make assertions about some of the arguments in a
call to mock, but either not care about some of the arguments or want to pull
them individually out of call_args
and make more complex
assertions on them.
To ignore certain arguments you can pass in objects that compare equal to
everything. Calls to assert_called_with()
and
assert_called_once_with()
will then succeed no matter what was
passed in.
>>> mock = Mock(return_value=None)
>>> mock('foo', bar=object())
>>> mock.assert_called_once_with('foo', bar=ANY)
ANY
can also be used in comparisons with call lists like
mock_calls
:
>>> m = MagicMock(return_value=None)
>>> m(1)
>>> m(1, 2)
>>> m(object())
>>> m.mock_calls == [call(1), call(1, 2), ANY]
True
FILTER_DIR¶
- unittest.mock.FILTER_DIR¶
FILTER_DIR
is a module level variable that controls the way mock objects
respond to dir()
. The default is True
,
which uses the filtering described below, to only show useful members. If you
dislike this filtering, or need to switch it off for diagnostic purposes, then
set mock.FILTER_DIR = False
.
With filtering on, dir(some_mock)
shows only useful attributes and will
include any dynamically created attributes that wouldn't normally be shown.
If the mock was created with a spec (or autospec of course) then all the
attributes from the original are shown, even if they haven't been accessed
yet:
>>> dir(Mock())
['assert_any_call',
'assert_called',
'assert_called_once',
'assert_called_once_with',
'assert_called_with',
'assert_has_calls',
'assert_not_called',
'attach_mock',
...
>>> from urllib import request
>>> dir(Mock(spec=request))
['AbstractBasicAuthHandler',
'AbstractDigestAuthHandler',
'AbstractHTTPHandler',
'BaseHandler',
...
Many of the not-very-useful (private to Mock
rather than the thing being
mocked) underscore and double underscore prefixed attributes have been
filtered from the result of calling dir()
on a Mock
. If you dislike this
behaviour you can switch it off by setting the module level switch
FILTER_DIR
:
>>> from unittest import mock
>>> mock.FILTER_DIR = False
>>> dir(mock.Mock())
['_NonCallableMock__get_return_value',
'_NonCallableMock__get_side_effect',
'_NonCallableMock__return_value_doc',
'_NonCallableMock__set_return_value',
'_NonCallableMock__set_side_effect',
'__call__',
'__class__',
...
Alternatively you can just use vars(my_mock)
(instance members) and
dir(type(my_mock))
(type members) to bypass the filtering irrespective of
mock.FILTER_DIR
.
mock_open¶
- unittest.mock.mock_open(mock=None, read_data=None)¶
A helper function to create a mock to replace the use of
open()
. It works foropen()
called directly or used as a context manager.The mock argument is the mock object to configure. If
None
(the default) then aMagicMock
will be created for you, with the API limited to methods or attributes available on standard file handles.read_data is a string for the
read()
,readline()
, andreadlines()
methods of the file handle to return. Calls to those methods will take data from read_data until it is depleted. The mock of these methods is pretty simplistic: every time the mock is called, the read_data is rewound to the start. If you need more control over the data that you are feeding to the tested code you will need to customize this mock for yourself. When that is insufficient, one of the in-memory filesystem packages on PyPI can offer a realistic filesystem for testing.在 3.4 版的變更: Added
readline()
andreadlines()
support. The mock ofread()
changed to consume read_data rather than returning it on each call.在 3.5 版的變更: read_data is now reset on each call to the mock.
在 3.8 版的變更: Added
__iter__()
to implementation so that iteration (such as in for loops) correctly consumes read_data.
Using open()
as a context manager is a great way to ensure your file handles
are closed properly and is becoming common:
with open('/some/path', 'w') as f:
f.write('something')
The issue is that even if you mock out the call to open()
it is the
returned object that is used as a context manager (and has __enter__()
and
__exit__()
called).
Mocking context managers with a MagicMock
is common enough and fiddly
enough that a helper function is useful.
>>> m = mock_open()
>>> with patch('__main__.open', m):
... with open('foo', 'w') as h:
... h.write('some stuff')
...
>>> m.mock_calls
[call('foo', 'w'),
call().__enter__(),
call().write('some stuff'),
call().__exit__(None, None, None)]
>>> m.assert_called_once_with('foo', 'w')
>>> handle = m()
>>> handle.write.assert_called_once_with('some stuff')
And for reading files:
>>> with patch('__main__.open', mock_open(read_data='bibble')) as m:
... with open('foo') as h:
... result = h.read()
...
>>> m.assert_called_once_with('foo')
>>> assert result == 'bibble'
Autospeccing¶
Autospeccing is based on the existing spec
feature of mock. It limits the
api of mocks to the api of an original object (the spec), but it is recursive
(implemented lazily) so that attributes of mocks only have the same api as
the attributes of the spec. In addition mocked functions / methods have the
same call signature as the original so they raise a TypeError
if they are
called incorrectly.
Before I explain how auto-speccing works, here's why it is needed.
Mock
is a very powerful and flexible object, but it suffers from two flaws
when used to mock out objects from a system under test. One of these flaws is
specific to the Mock
api and the other is a more general problem with using
mock objects.
First the problem specific to Mock
. Mock
has two assert methods that are
extremely handy: assert_called_with()
and
assert_called_once_with()
.
>>> mock = Mock(name='Thing', return_value=None)
>>> mock(1, 2, 3)
>>> mock.assert_called_once_with(1, 2, 3)
>>> mock(1, 2, 3)
>>> mock.assert_called_once_with(1, 2, 3)
Traceback (most recent call last):
...
AssertionError: Expected 'mock' to be called once. Called 2 times.
Because mocks auto-create attributes on demand, and allow you to call them with arbitrary arguments, if you misspell one of these assert methods then your assertion is gone:
>>> mock = Mock(name='Thing', return_value=None)
>>> mock(1, 2, 3)
>>> mock.assret_called_once_with(4, 5, 6) # Intentional typo!
Your tests can pass silently and incorrectly because of the typo.
The second issue is more general to mocking. If you refactor some of your code, rename members and so on, any tests for code that is still using the old api but uses mocks instead of the real objects will still pass. This means your tests can all pass even though your code is broken.
Note that this is another reason why you need integration tests as well as unit tests. Testing everything in isolation is all fine and dandy, but if you don't test how your units are "wired together" there is still lots of room for bugs that tests might have caught.
mock
already provides a feature to help with this, called speccing. If you
use a class or instance as the spec
for a mock then you can only access
attributes on the mock that exist on the real class:
>>> from urllib import request
>>> mock = Mock(spec=request.Request)
>>> mock.assret_called_with # Intentional typo!
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'assret_called_with'
The spec only applies to the mock itself, so we still have the same issue with any methods on the mock:
>>> mock.has_data()
<mock.Mock object at 0x...>
>>> mock.has_data.assret_called_with() # Intentional typo!
Auto-speccing solves this problem. You can either pass autospec=True
to
patch()
/ patch.object()
or use the create_autospec()
function to create a
mock with a spec. If you use the autospec=True
argument to patch()
then the
object that is being replaced will be used as the spec object. Because the
speccing is done "lazily" (the spec is created as attributes on the mock are
accessed) you can use it with very complex or deeply nested objects (like
modules that import modules that import modules) without a big performance
hit.
Here's an example of it in use:
>>> from urllib import request
>>> patcher = patch('__main__.request', autospec=True)
>>> mock_request = patcher.start()
>>> request is mock_request
True
>>> mock_request.Request
<MagicMock name='request.Request' spec='Request' id='...'>
You can see that request.Request
has a spec. request.Request
takes two
arguments in the constructor (one of which is self). Here's what happens if
we try to call it incorrectly:
>>> req = request.Request()
Traceback (most recent call last):
...
TypeError: <lambda>() takes at least 2 arguments (1 given)
The spec also applies to instantiated classes (i.e. the return value of specced mocks):
>>> req = request.Request('foo')
>>> req
<NonCallableMagicMock name='request.Request()' spec='Request' id='...'>
Request
objects are not callable, so the return value of instantiating our
mocked out request.Request
is a non-callable mock. With the spec in place
any typos in our asserts will raise the correct error:
>>> req.add_header('spam', 'eggs')
<MagicMock name='request.Request().add_header()' id='...'>
>>> req.add_header.assret_called_with # Intentional typo!
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'assret_called_with'
>>> req.add_header.assert_called_with('spam', 'eggs')
In many cases you will just be able to add autospec=True
to your existing
patch()
calls and then be protected against bugs due to typos and api
changes.
As well as using autospec through patch()
there is a
create_autospec()
for creating autospecced mocks directly:
>>> from urllib import request
>>> mock_request = create_autospec(request)
>>> mock_request.Request('foo', 'bar')
<NonCallableMagicMock name='mock.Request()' spec='Request' id='...'>
This isn't without caveats and limitations however, which is why it is not the default behaviour. In order to know what attributes are available on the spec object, autospec has to introspect (access attributes) the spec. As you traverse attributes on the mock a corresponding traversal of the original object is happening under the hood. If any of your specced objects have properties or descriptors that can trigger code execution then you may not be able to use autospec. On the other hand it is much better to design your objects so that introspection is safe [4].
A more serious problem is that it is common for instance attributes to be
created in the __init__()
method and not to exist on the class at all.
autospec can't know about any dynamically created attributes and restricts
the api to visible attributes.
>>> class Something:
... def __init__(self):
... self.a = 33
...
>>> with patch('__main__.Something', autospec=True):
... thing = Something()
... thing.a
...
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'a'
There are a few different ways of resolving this problem. The easiest, but not necessarily the least annoying, way is to simply set the required attributes on the mock after creation. Just because autospec doesn't allow you to fetch attributes that don't exist on the spec it doesn't prevent you setting them:
>>> with patch('__main__.Something', autospec=True):
... thing = Something()
... thing.a = 33
...
There is a more aggressive version of both spec and autospec that does prevent you setting non-existent attributes. This is useful if you want to ensure your code only sets valid attributes too, but obviously it prevents this particular scenario:
>>> with patch('__main__.Something', autospec=True, spec_set=True):
... thing = Something()
... thing.a = 33
...
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'a'
Probably the best way of solving the problem is to add class attributes as
default values for instance members initialised in __init__()
.
Note that if
you are only setting default attributes in __init__()
then providing them via
class attributes (shared between instances of course) is faster too. e.g.
class Something:
a = 33
This brings up another issue. It is relatively common to provide a default
value of None
for members that will later be an object of a different type.
None
would be useless as a spec because it wouldn't let you access any
attributes or methods on it. As None
is never going to be useful as a
spec, and probably indicates a member that will normally of some other type,
autospec doesn't use a spec for members that are set to None
. These will
just be ordinary mocks (well - MagicMocks):
>>> class Something:
... member = None
...
>>> mock = create_autospec(Something)
>>> mock.member.foo.bar.baz()
<MagicMock name='mock.member.foo.bar.baz()' id='...'>
If modifying your production classes to add defaults isn't to your liking
then there are more options. One of these is simply to use an instance as the
spec rather than the class. The other is to create a subclass of the
production class and add the defaults to the subclass without affecting the
production class. Both of these require you to use an alternative object as
the spec. Thankfully patch()
supports this - you can simply pass the
alternative object as the autospec argument:
>>> class Something:
... def __init__(self):
... self.a = 33
...
>>> class SomethingForTest(Something):
... a = 33
...
>>> p = patch('__main__.Something', autospec=SomethingForTest)
>>> mock = p.start()
>>> mock.a
<NonCallableMagicMock name='Something.a' spec='int' id='...'>
This only applies to classes or already instantiated objects. Calling
a mocked class to create a mock instance does not create a real instance.
It is only attribute lookups - along with calls to dir()
- that are done.
Sealing mocks¶
- unittest.mock.seal(mock)¶
Seal will disable the automatic creation of mocks when accessing an attribute of the mock being sealed or any of its attributes that are already mocks recursively.
If a mock instance with a name or a spec is assigned to an attribute it won't be considered in the sealing chain. This allows one to prevent seal from fixing part of the mock object.
>>> mock = Mock() >>> mock.submock.attribute1 = 2 >>> mock.not_submock = mock.Mock(name="sample_name") >>> seal(mock) >>> mock.new_attribute # This will raise AttributeError. >>> mock.submock.attribute2 # This will raise AttributeError. >>> mock.not_submock.attribute2 # This won't raise.
在 3.7 版新加入.